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Abstract
Resonating valence bond (RVB) liquids in two dimensions are believed to
exhibit topological order and to admit no local order parameter of any kind.
This is a defining property of ‘liquids’, but it has been confirmed explicitly only
in a few exactly solvable models. In this paper, we investigate the quantum
dimer model on the triangular lattice. This possesses an RVB-type liquid phase,
however, for which the absence of a local order parameter has not been proved.
We examine the question numerically with a measure based on reduced density
matrices. We find a scaling of the measure which strongly supports the absence
of any local order parameter.

1. Introduction

The existence of short-ranged resonating valence bond (RVB) liquids has been proposed in
several two-dimensional quantum spin models [1]. These liquids exhibit no kind of simple
order, but the ground states (GS) are degenerate if the lattice is put on a surface with a
non-trivial topology (cylinder, torus, etc). It is (widely) believed that such degeneracy has a
purely topological origin and is not ascribed to spontaneous symmetry breaking in terms of any
local order parameter. This topological nature has been rigorously confirmed in a few exactly
solvable models [2, 3], but proving this property in more general cases is a challenging issue.

In this paper, we address this issue by formulating the problem in terms of reduced density
matrices (RDM), as we proposed in [3]. In this formulation, we examine the RDMs of the
degenerate GSs for various sub-areas of the system and search for an operator distinguishing
the degenerate GSs, which means that it can be used as an order parameter. We define a
convenient measure for this purpose, which is non-zero for an area where an order parameter
can be defined. In conventional orders, the measure is non-zero on some finite local area,
which indicates the existence of an order parameter on that area. In RVB liquids, in contrast,
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it is expected that the measure is zero (in the thermodynamic limit) on any local area, thereby
verifying topological order.

With this formulation, we analyse the quantum dimer model (QDM) on the triangular
lattice, which is one of the simplest microscopic models realizing an RVB liquid [4]. We show
numerically that the dimer liquid in this model cannot be characterized by any local order
parameter.

2. Formulation

2.1. General case

We formulate a method to detect an order parameter starting from a general setting. Let q be
the degeneracy of the GSs and |�i 〉 (i = 1, . . . , q) be the orthonormal GSs. For a state |�〉
in the ground-state subspace, we define its RDM on an area � by tracing out the degrees of
freedom outside�: ρ� ≡ Tr�̄ |�〉〈�|, where �̄ is the complement of �. We also introduce as
a reference the RDM averaged over the ground-state subspace: ρref

� ≡ 1
q Tr�̄

∑q
i=1 |�i〉〈�i |.

Note that ρref
� is independent of the choice of the basis {|�i〉} of the ground-state subspace. An

order parameter can be defined on � if and only if there exists |�〉 such that ρ� �= ρref
� .

To quantify to what extent RDMs are distinguishable, we introduce a measure D� as
follows. We first define a measure of difference between two RDMs as [3]

diff(ρ�, ρ
ref
� ) ≡ max

|O�|�1

∣
∣Tr�(O�ρ�)− Tr�(O�ρ

ref
� )

∣
∣ , (1)

where O� is a (variational) Hermitian operator on � whose norm is less than unity, i.e.
|〈ψ|O�|ψ〉| � 1 for any normalized vector |ψ〉. Using the eigenvalues {λ j} of ρ� − ρref

� ,
this can be simplified as diff(ρ�, ρref

� ) = ∑
j |λ j |. We define D� by maximizing diff(ρ�, ρref

� )

over the choice of a GS |�〉:
D� ≡ max

|�〉
diff(ρ�, ρ

ref
� ). (2)

The value of D� in the thermodynamic limit tells us whether an order parameter can be defined
on �. The measure D� has the following useful properties: (a) normalization to a definite
range 0 � D� � 2 − 2/q; (b) monotonicity—if an area � completely contains an area �, we
have D� � D�.

How to calculate D� is not clear from the definition. In the case of QDMs, a simple
formula is available, which we derive in the next subsection. However, for the completeness
of the method, here we briefly describe a general algorithm called iterative maximization. The
difficulty in calculating D� resides in the double maximizations in equations (1) and (2), but
we notice that each maximization is possible if either O� or |�〉 is fixed. The idea is to perform
these two kinds of maximizations alternately, starting from a random vector |�〉. This would
lead at least to a local maximum in the space of O� and |�〉. Starting from various random
vectors, we would obtain the global maximum D�. This method has the potential to handle a
wide range of problems.

2.2. Case of quantum Dimer models

We limit the setting to the case of gapped dimer liquids in QDMs on two-dimensional lattices,
where further argument is possible. The gapped dimer liquids have been found in several
QDMs [4, 6] and related models [2, 7]. However, except for the special cases [2, 3, 6] where
the correlation length is strictly zero, it is difficult to prove the absence of any local order
parameter. This motivates us to study more general cases.

2



J. Phys.: Condens. Matter 19 (2007) 145212 S Furukawa et al

Let S be the set of all the dimer coverings of the lattice. If the lattice has a non-trivial
topology, S can be grouped into topological sectors which are not mixed by any local operation.
We concentrate on the case of the torus in the following. We draw two incontractible loops,	1

and 	2, which pass through the bonds and wind the torus in x and y directions, respectively.
We classify S into four topological sectors S p with p = ++,+−,−+,−−, depending on the
parity of the number of dimers crossing	1 and	2. In a gapped dimer liquid, the lowest-energy
states |�p〉 in different topological sectors S p become degenerate in the thermodynamic limit.
We employ {|�p〉} as the basis of the ground-state subspace.

To define RDMs for QDMs, we must specify the local degrees of freedom of the models.
To this end, we assign an Ising variable σk to each bond k of the lattice as in [8] and identify
the presence/absence of a dimer on the bond as σk = +1 and −1, respectively. Any physical
configuration {σk} must satisfy the hard-core constraints: for each site of the lattice, there must
be exactly one bond with σk = 1 emanating from it. An area � is defined as a set of bonds. We
define the matrix element of the RDM of a GS |�〉 as

〈c1|ρ�|c2〉 =
∑

c̄

〈c1, c̄|�〉〈�|c2, c̄〉, (3)

where c1 and c2 are dimer configurations on� and the sum is over all the dimer configurations
c̄ on �̄. Note that we set 〈c, c̄|�〉 = 0 if (c, c̄) is an unphysical configuration (violating the
hard-core constraint).

We proceed to the evaluation of D�. We first assume that the area � is topologically non-
trivial, i.e. � encircles the torus. Without loss of generality, we assume that � contains 	1.
Let us consider the following trial GS and trial operator:

|�(trial)〉 = |�++〉, O(trial)
� =

∑

c

|c〉P(c)〈c|,

where, in the second equation, c runs over all the dimer configurations on � and P(c) is its
parity along 	1. These give a lower bound of D�:

D� � | Tr�O(trial)
� (Tr�̄ |�(trial)〉〈�(trial)| − ρref

� )| = 1.

Thus the value of D� is consistent with the existence of a non-local order parameter.
We next assume that � is a (finite) local area. In this case, we can prove the following

relation:

Tr�̄ |�p〉〈�p′ | = 0 (p �= p′). (4)

To prove this relation, we explicitly express the matrix element of the left-hand side:

〈c1|
(
Tr�̄ |�p〉〈�p′ |) |c2〉 =

∑

c̄

〈c1, c̄|�p〉〈�p′ |c2, c̄〉.

Since � is local, we can choose 	1 and 	2 so as not to touch �. Then the dimer coverings
(c1, c̄) and (c2, c̄) always belong to a common topological sector, and therefore 〈c1, c̄|�p〉 and
〈�p′ |c2, c̄〉 cannot become non-zero at the same time. Hence we obtain equation (4). Using
equation (4), we can derive a simpler expression for D�:

D� = max
p

diff(ρ p
�, ρ

ref
� ), with ρ p

� ≡ Tr�̄ |�p〉〈�p|. (5)

This is computable numerically and is employed in the calculation shown below.

3. Numerical result

We consider the QDM on the triangular lattice. The Hamiltonian reads [4]:

H =
∑

rhombi

[−t
(∣
∣
� �

� �
〉 〈

� �

� �
∣
∣ + h.c.

) + v
(∣
∣
� �

� �
〉 〈

� �

� �
∣
∣ + ∣

∣
� �

� �
〉 〈

� �

� �
∣
∣
)]
. (6)
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Figure 1. Circular areas centred around a site (left) or an interior of a triangle (right).
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Figure 2. The result for the RK wavefunction: (a) the value of D� as a function of the radius R for

different system sizes N ; (b) fitting of the data using an exponential function D� ≈ ceaR−b
√

N .

At the Rokhsar–Kivelson (RK) point (v = t), the GS in each sector is exactly the equal-
amplitude superposition of all the dimer coverings belonging to that sector [4, 5]:

|�p〉 = 1√|S p|
∑

C∈S p

|C〉. (7)

It has been shown numerically that the degeneracy of the GSs and the exponential decay of
the dimer–dimer correlation at the RK point persist up to some range in the parameter space,
forming a dimer liquid phase in 0.7 � v/t � 1 [4, 9–11].

We first calculated D� numerically for the RK wavefunction, equation (7), through the
direct enumeration of dimer coverings (up to N = 52) or the evaluation of Pfaffians of
Kasteleyn matrices [12] (up to N = 256). The former method is suited for large areas,
while the latter can handle large systems. The lattice is put on the torus and is defined by
two vectors, T1 and T2, specifying the periodicity. We require that the lattice is symmetric
under the 2π/3 rotation, choosing T1 = lu + mv and T2 = −mu + (l + m)v, where l
and m are integers and u and v are unit vectors, as shown in figure 1. The total number of
sites is given by N = l2 + lm + m2. As the choice of �, we define circular areas in the
following way: we draw a circle centred around a site or an interior of a triangle and regard
every bond whose midpoint is in the circle as an element of the area (see figure 1). The values
of D� for circular areas are plotted versus the radius R in figure 2(a). Though D� tends to
increase as a function of R, it remains small if R is sufficiently smaller than the linear system
size

√
N . It appears that an exponential dependence D� ≈ cea R−b

√
N fits the data relatively
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Figure 3. (a) Main panel: fitting of the data of D� for v/t = 0.9. Inset: obtained fitting parameters
a, b for different values of v/t in the dimer liquid phase. (b) A loop (broken line) encircling the
torus and the area �. Periodic boundary conditions are imposed along T1 and T2. Part of the loop
with a length of

√
N − 2R is not covered by �.

well, as can be seen in figure 2(b). We also performed a calculation for v/t < 1 by obtaining
GSs by exact diagonalization. We fit the data in the same way and the resultant parameters
a and b are shown in the inset of figure 3(a). We observe that the relation a ≈ 2b holds
approximately in the dimer liquid phase. This indicates that the finite-size effect in D� enters
through

√
N − 2R. To interpret this, let us consider a loop encircling the torus and passing

through �; see figure 3(b). Some part of a loop is not covered by � and the minimal length of
the part is

√
N − 2R. The lack of this part makes the distinction of sectors obscure, hence the

exponential reduction in D�. Our result shows explicitly the topological nature of the liquid,
since D� goes to zero exponentially with N → ∞ for any fixed R. This not only excludes local
order parameters which are diagonal in the dimer basis (and amenable to exact calculations in
the N → ∞ limit [11]), but any operator, possibly non-diagonal, too. The parameter b is
naturally interpreted as the inverse of a correlation length, and the value we obtained at the RK
point is close to ξ−1

A ≈ 0.83 ± 0.12iπ and ξ−1
B ≈ 0.76 obtained by [11], where A refers to the

direction along a bond and B refers to the direction perpendicular to it.

4. Conclusion

We formulated a method to detect the existence of an order parameter using reduced density
matrices. We applied the method numerically to the liquid phase of the QDM on the triangular
lattice. The measure D� that we defined contrasts local areas with non-local areas: D� → 0
with N → ∞ on local areas, while D� � 1 on non-local areas. The data of D� is fitted well
by an exponential function, which can be interpreted from the topological picture. Our result
explicitly verifies topological order in this system.
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